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Impacts of Extreme Space Weather Events on Power Grid Infrastructure: Physics=
Based Modeling of Geomagnetically Induced Currents (GICs) During Carrington-
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Geo-Magnetic Disturbances (GMDs) can
come from Space Weather or EMP/E3

e GMDs can come from storms (CMEs.)
Perturbations are at and above ionosphere.

* Or nuclear explosions. Perturbations are
between ground and ionosphere.

* The perturbations detected on the ground
are similar for both sources and can impact
power distribution systems similarly.
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* The strongest geomagnetic storms are due to CME impacts.

 The magnetopause becomes severely compressed on the
dayside. For large events this breaks many existing models.

* The nightside tail dynamics become dramatically enhanced due
to magnetic reconnection in the “tail”. Substorm physics and
coupling to the inner magnetosphere is still not well represented
in the global models.

Dst(nT)

The “Carrington/GIC” Project @&

Ultimate goals are to:

e Simulate a Carrington-
class storm.

* Assess its impacts on
power grid infrastructure.

* Develop mitigation
strategies.
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Power Grid Basics and and Geo- Generator Step-Up (GSU) and Substation Step-Down
magnetica”y |nduced Currents (G|CS) Transformers are the most susceptible.

* They are grounded and form large “loop antennas” in

Transmission grid Distribution grid ] )
which GMDs induce currents to flow (called GICs.
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Current NERC GMD event planning work flow (TPL-007-1)
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e Capturing space weather to the ground-level electric field has three basic steps that scales a measured event
(1989 QH) to the region of interest:
1. Approximate the strength of a 1 in 100 year storm

2. Scale storm strength by 1D local ground conductivity
3. Scale storm strength by magnetic latitude

e The resultant uniform electric field is applied to the transmission network of interest and impacts are
assessed.

 Mitigation measures are introduced “by hand” until a network configuration that is stable to induced GIC is
found.



Main Goals of the LANL Carrington/GIC Project

* Improve models to accommodate extreme storm conditions.

* Use observations to guide model solutions for well-observed weak to
strong events. Scale up to Carrington-class events.

* Improve dB/dt calculations on the ground.

e Assess impacts on power grid infrastructure from Carrington-class
storm events.

 Actively determine power grid network configurations that optimize
resiliency to GICs.

Space Weather Workshop, 2018
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How do you Validate a Modelled
Carrington-Class Event?

Short answer: You cant really.

Next best thing:

* Improve models so they have a
chance with the extreme events.

 Learn how to scale up to a
Carrington-class event by modelling
well-observed large events.

* Include uncertainties via ensemble
modelling.

Potential problem: “New” exotic
mechanisms/instabilities may occur during
Carrington-class events that the models
can’t handle.



Model Improvements

* Use Adaptive Mesh Refinement (AMR) to track the magnetopause
with sufficient resolution during the rapid push-in.

* Embed 3D PIC (iPIC3D) at moving magnetopause to more accurately
model the dayside reconnection. Validation efforts using MMS data
underway.

* Add ionospheric conductivity enhancements and FACs from inner
magnetospheric model, RAM/SCB.
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* Improved lonospheric conductance model. Currently
based on limited data, during relatively quiet time



SWMF Model Development: Improving Conductance Model

* “Jumps” in auroral oval during ; Empirical ionospheric conductance
extreme events fixed | model expanded & improved
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RAM/SCB Model Development

Add missing inner magnetosphere-ionosphere coupling.

e Add wave-particle interactions to drive precipitation which
contributes to ionospheric Hall/Pedersen conductivities.

* Allows FACs and Electric potential to feed back to
magnetospheric transport codes.

e Particularly needed during extreme storm intervals when activity

moves closer to the Earth (i.e. equatorward in ionosphere.)
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RAM-SCB: Two-way Coupling Between Ring Current and the lonosphere
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LanlGeoRad: Improved dB/dT Calculations LANL's Climate, Ocean and

Sea Ice Modeling (COSIM)

* Current state-of-the art is to compute Delta-B on the ground using program has developed
: : : . technology to generate (7
Biot-Savart integrals over 4 different current systems (lonospheric : . il
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* Instead of this, we are developing a Finite-Difference Time-Domain
(FDTD) model to propagate disturbances to the ground:
LANLGeoRad.

2

* Variable resolution spherical Voronoi mesh. (Machinery developed

by LANL's COSIM team.) Initial testing: a line current turning on. 2-D

e Grid starts at the top of the BATSRUS gap region and extends down height profiles of electric field

into the conductive Earth.

e 3D ground conductivities are required as inputs.

Initial testing of magnetic perturbations resulting from realistic steady-state empirical
currents. Ongoing work being performed to validate against Biot-Savart results.




Observations: What physical processes control when and where the
most intense and highly localized GMDs occur during storms?

E. T=30 MIN~IHR

Akasofu, [1964]
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A number of smaller-scale impulsive
auroral disturbances commonly occur
during storms: substorm onsets, pseudo-
breakups, streamers, and omega bands.

We are currently exploring which of these
are associated with the most significant
levels of |dB/dt| on the ground.

(a)

(b)

Lifecycle of an Embedded Substorm
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Ground Magnetometer |dB/dt|

November 9, 1998 (1998313) | 300 nT/min
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PBls, streamers, omega bands can produce large, localized, sustained
dB/dt > We need to model flow bursts reasonably well. But they are
likely to be stochastic!



Data Insertion/Assimilation for RAM-SCB and SWMF

* We are developing a novel method for
data insertion in the coupled
SWMF/RAM-SCB codes.

* Use data fitted empirical magnetic field
models (e.g. Brito and Morley 2017) to
provide the “B (boundary)” link instead
of getting it from SWMF. And LANL/GEO
data to provide the “Flux (Boundary)”
link. Can also “blend” BATS-R-US and
data sources.

2
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 RAM evolves pressure and feeds back to
SWMF.

* Ingestion of B and particle data in this
manner will force both coupled models
to conform better to the observations.




SWMF Magnetotail Tuning

GSM Z (R,)

IMF B, (nT)

Pressure (nPa)

20
15 30
10
0 >
10 —10%
-20
-30

|
wu

—-10

-15

-20

-10

GSM X (Rp)
Solar Wind Conditions
20 : : . —_— 550
15| .
10 ' 500
5 =
or W ™ 450 £
s | =
~10 400
_15 |
—20 7500 Ut 18:00 UT 00:00 UT 06:00 UT 12:00 UT 18:00 UT 00:00 U

Universal Time from 2005-08-31T09:00:00

Flows in the Magnetotail
impact auroral zone field
lines.

Tune SWMF to adjust
reconnection locations (e.g.
via anomalous resistivity) to
better match observations.

Parameterization or
characterization of this
relationship will (hopefully)
enable us to extrapolate to
Carrington-class simulations.



Impacts of Geomagnetic Disturbances on the Ground: EMP/E3
Coupling to Texas 2000 Bus Model

* Initial work uses model EMP/E3 disturbances to Texas 2000 Bus Model
exercise the power flow solver to obtain GICs on
a network model.

* |[nitial end-to-end analysis was also recently
performed using SWMF GMD outputs. A “version
1.0” of the overall project task connectivity has
been completed.

|EC de facto standard

o5 =10 S/m

7
TN +

1 10' 10 10°

Time (s) lEf: 126/



Hypothetical transmission network Optlmlzmg Resilience Of Power

arb. placed in western Pennsylvania
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(2017), Optimal Transmission Line Switching under Geomagnetic
¢o Space Weather Workshop, 2018 Disturbances, IEEE Transactions on Power Systems, to appear



SWMF Geo-Electric Field and Voltages at Power Grid Nodes

 Computation of voltages at arbitrary locations on the Earth using SWMF.

* This example uses simple random network and 1-D ground conductivity model, but it is
setup to also use full 3-D impedance tensors and/or conductivity depth profiles.
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Ensemble Modelling
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Ensemble Modelling
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Ensemble Modelling — SWPC Challenge Event #5

SWMF: Original Run
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Ensemble Modelling — SWPC Challenge Event #5

SWMF: 37 Ensemble Members + Original Run
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Summary

» Carrington/GIC is a large project (LANL, U. Michigan, USGS) to:
1. simulate a Carrington-class storm (Dst ~ -1800nT)
2. assess impacts on power grid infrastructure (develop new physics-based benchmarks)
3. develop mitigation strategies via active network control

* lonospheric conductances used in SWMF are being redefined using much more data and
will be further binned by driving.

 FDTD EM propagator (LanlGeoRad) being is developed to replace the Biot-Savart method
currently used to compute dB/dt (will use full 3D ground conductivities where available.)

* The largest and most sustained |dB/dt| signals appear to be associated with time periods
dominated by streamers/omega band types auroral forms. This implies that we need to be
able to model flow bursts that penetrate towards the inner magnetosphere.

* We have developed a novel approach (via data inputs to improved RAM-SCB model) for
assimilation of data into the coupled SWMF.

e SWMF GMDs are now coupled to LANL power grid analysis and optimization codes and we
have the machinery in place to generate ensemble runs.



